

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Certain Subclasses of Bi-Univalent Functions Defined by $(p,q)-{\rm Differential}$ Operator

Rmsen, A. A. A.¹, Shivarudrappa, H. L.², and Ravikumar, N.*¹

¹PG Department of Mathematics JSS College of Arts Commerce and Science, Mysuru-570025, India ²Department of Mathematics, JSS Science and Technology University, Mysore - 570006, India

> *E-mail: ravisn.kumar@gmail.com* *Corresponding author

> > Received: 19 September 2023 Accepted: 30 October 2023

Abstract

The attention of the current paper, is to discover a new subclass $\mathcal{M}_{p,q}(\zeta, \Psi)$ and $\mathcal{F}_{p,q}(\delta, \Psi)$ of bi-univalent functions in the open disc \mathfrak{U} , using (p,q)-differential operator. Furthermore, we perceive estimates on coefficients $|x_2|$ and $|x_3|$ for functions in the new subclass.

Keywords: analytic function; univalent function; bi-univalent function; starlike function; convex function; (p, q)-derivative operator.

1 Introduction

Let \mathscr{A} be a sign of the class of functions of the structure,

$$\mathscr{L}(\varsigma) = \varsigma + \sum_{d=2}^{\infty} a_d \varsigma^d, \tag{1}$$

which are analytic in the open unit disc $\mathfrak{U} = \{\varsigma : |\varsigma| < 1\}$. Also, \mathscr{S} indicates the set of all subclasses of \mathscr{A} that are schlit or univalent in \mathfrak{U} . In spite of the inverse functions of single-value functions are inverse functions, they don't need to be defined on the whole unit disc \mathfrak{U} . Obviously, according to the *Köebe's* one-quarter theorem [4], which states that the disc with radius $\frac{1}{4}$ is the co-domain of \mathfrak{U} . As a result, each and every univalent function \mathscr{L} has an inverse \mathscr{L}^{-1} satisfying,

$$\mathscr{L}^{-1}(\mathscr{L}(\varsigma)) = \varsigma, (\varsigma \in \mathfrak{U}), \quad \text{and} \quad \mathscr{H}(w) = \mathscr{L}^{-1}(\mathscr{L}(w)) = w, \quad \left(|w| < r_0(\mathscr{L}); r_0(\mathscr{L}) \ge \frac{1}{4} \right),$$

where

$$\mathscr{L}^{-1}(w) = w - x_2 w^2 + (2x_2^2 - x_3)w^3 - (5x_2^3 - 5x_2x_3 + x_4)w^4 + \dots$$
(2)

A function $\mathscr{L} \in \mathscr{A}$ is said to be bi-univalent in \mathfrak{U} if both $\mathscr{L}(\varsigma)$ and $\mathscr{L}^{-1}(\varsigma)$ are univalent in \mathfrak{U} . Let Σ denote the class of bi-univalent functions in \mathfrak{U} given by (1). For a summary of the facts history and compulsive examples of functions in the class Σ , various writers have established and demonstrated subclasses of Σ .

The classes $\mathscr{H}^{\alpha}_{\Sigma}(0 < \alpha \leq 1)$ and $\Sigma^{*}(\alpha)$ of bi-univalent functions were introduced by Srivastava et al. [13] and Brannan et al. [1] respectively and they showed for every function $f \in \Sigma$ of the form (1). Lewin [8] investigated the bi-univalent function class Σ and showed that $|a_2| < 1.51$. Hadi et al. [6] have concerned in examining of bi-univalent functions and investigated the bounds of the coefficients estimate $|a_2|$ and $|a_3|$ by using *q*-convolution operator.

For two analytic functions in the unit disc \mathfrak{U} , then an analytic function \mathscr{L} is subordinate to an analytic function \mathscr{G} , written $\mathscr{L}(\varsigma) \prec \mathscr{G}(\varsigma)$ if \mathscr{L} can be indicate in form of composition of \mathscr{G} and w as $\mathscr{L}(\varsigma) = \mathscr{G}(w(\varsigma))$ subject to the existance of analytic function w that satisfies the following condition w(0) = 0 and $|w(\varsigma)| < |(\varsigma)|$.

In their work, Ma and Minda [10] introduced a unification of different subclasses of starlike and convex functions. They considered an analytic function Ψ defined on the domain \mathfrak{U} , where \mathfrak{U} is a unit disc. The function Ψ satisfies $\Psi(0) = 1$ and $\Psi'(0) > 0$. In addition, it is assumed that Ψ maps the unit disk onto a region that is starlike with respect to a specific point and symmetric with respect to the real axis. In the follow-up, it is assumed that a function of this kind can be represented by a series expansion in the structure,

$$\Psi(\varsigma) = 1 + X_1\varsigma + X_2\varsigma^2 + X_3\varsigma^3 + \dots (X_1 > 0).$$
(3)

The concept of strongly starlike functions is a topic in complex analysis and typically deals with starlike functions with respect to some fixed point. In this case, you have mentioned a function,

$$\Psi(\varsigma) = \left(\frac{1+\varsigma}{1-\varsigma}\right)^{\gamma} = 1 + 2\gamma\varsigma + 2\gamma^2\varsigma^2 + \dots (0 < \gamma \le 1),$$
(4)

and want to determine if it belongs to the class of strongly starlike functions of order $\gamma(0 < \gamma \le 1)$, which provides $X_1 = 2\gamma$ and $X_2 = 2\gamma^2$.

A. A. A. Rmsen et al.

The quantum calculus has numerous applications in the fields of special functions and many further spaces. We utilize essential notations and (p,q)-calculus is handed by Chakrabarti and Jagannathan [2],

$$[d]_{p,q} = \frac{p^d - q^d}{p - q}, \quad p > 0, \quad q > 0.$$

In particular, we attain,

$$\lim_{p \to 1} [d]_{p,q} = [d]_q,$$

which studied by Kac and Cheung [7]. Obviously, the notation is symmetric, i.e,

$$[d]_{p,q} = [d]_{q,p}$$

Note that, Milovanović et al. [11] and Gupta [5] established some basic properties of (p, q)-operators.

Definition 1.1. The (p,q)-derivative operator of a function \mathscr{L} is defined by,

$$D_{p,q}\mathscr{L}(\varsigma) = \frac{\mathscr{L}(p\varsigma) - \mathscr{L}(q\varsigma)}{\varsigma(p-q)}, \quad (p \neq q, \quad \varsigma \in \mathfrak{U}),$$
(5)

$$D_{p,q}\mathscr{L}(\varsigma) = 1 + \sum_{d=2}^{\infty} [d]_{p,q} a_d \varsigma^{d-1},$$
(6)

in addition we remark that $\lim_{q \longrightarrow 1^{-}} \lim_{p \longrightarrow 1^{-}} D_{p,q} \mathscr{L}(\varsigma) = \mathscr{L}'(\varsigma),$

$$(D_{p,q}\mathscr{L})(0) = \mathscr{L}'(0),$$

provided that \mathscr{L} is differentiable at 0.

2 Bi-Univalent Function Class $\mathcal{M}_{p,q}(\zeta, \Psi)$

We introduce a subclass $\mathcal{M}_{p,q}(\zeta, \Psi)$ of Σ and find approximate on the coefficient $|x_2|$ and $|x_3|$ for the functions in the recently developed subclass, by subordination.

Definition 2.1. A function \mathscr{L} in the form (1) belongs to the class $\mathcal{M}_{p,q}(\zeta, \Psi)$ if it satisfies the following subordination conditions,

$$(1-\zeta)\left(\frac{\varsigma D_{p,q}\mathscr{L}(\varsigma)}{\mathscr{L}(\varsigma)}\right) + \zeta\left(\frac{D_{p,q}\left(\varsigma D_{p,q}\mathscr{L}(\varsigma)\right)}{D_{p,q}\mathscr{L}(\varsigma)}\right) \prec \Psi(\varsigma), \quad (0 \le \zeta \le 1, 0 (7)$$

and

$$(1-\zeta)\left(\frac{wD_{p,q}\mathscr{H}(w)}{\mathscr{H}(w)}\right) + \zeta\left(\frac{D_{p,q}\left(wD_{p,q}\mathscr{H}(w)\right)}{D_{p,q}\mathscr{H}(w)}\right) \prec \Psi(w), \quad (0 \le \zeta \le 1, 0
(8)$$

where ς , *w* are within \mathfrak{U} , and \mathscr{H} is defined as in (2).

Remark 2.1.

- 1. For $p \to 1^-$, $q \to 1^-$, the class $\mathcal{M}_{p,q}(\zeta, \Psi)$ reduces the class $\mathcal{M}(\gamma, \zeta)$ studied by Li and Wang [9].
- 2. For $p \to 1^-$, $q \to 1^-$ and $\zeta = 0$, the class $\mathcal{M}_{p,q}(\zeta, \Psi)$ reduces to the class $\mathscr{S}_{\Sigma}(\lambda, \gamma, \varphi)$ which introduced by Deniz [3].
- 3. For $p \to 1^-$, $\gamma = 0$, $\lambda = 1$ and different parameters $r, \mathfrak{s}, \mathfrak{t}$, the class investigated by Srivastava et al. [14] reduces to the class $\mathcal{M}_q(\zeta, \Psi)$, for $p \to 1^-, \sigma = 1, \delta = 0$ and some parameters of \mathfrak{t}, n we have the class studied by Wanas and Mahdi [15].

We require this lemma to establish the main result.

Lemma 2.1. [12] Let \mathfrak{T} be the family of all functions \mathfrak{S} that are analytic in \mathfrak{U} with $\mathfrak{S}(0) = 1$ and $\Re(\mathfrak{S}(\varsigma)) > 0(\forall \varsigma \in \mathfrak{U})$. If a function $\mathfrak{S} \in \mathfrak{T}$ is given by $\mathfrak{S}(\varsigma) = 1 + r_1\varsigma + r_2\varsigma^2 + \ldots$ for ς in the unite disk then $|r_k| \leq 2 \quad (\forall k \in \mathbb{N})$.

3 Main Result

Theorem 3.1. Let $\mathscr{L}(\varsigma)$ given by (1) be in the class $\mathcal{M}_{p,q}(\zeta, \Psi)$. Then,

 $|x_2| \leq$

$$\frac{X_1\sqrt{X_1}}{\sqrt{\left|\left(\left(Z-1\right)\left(1-\zeta+Z\zeta\right)-\left(Y-1\right)\left(1-\zeta+Y^2\zeta\right)\right)X_1^2+\left(Y-1\right)^2\left(1-\zeta+Y\zeta\right)^2\left(X_1-X_2\right)\right|}},$$
(9)

and

$$|x_{3}| \leq \left(\frac{X_{1}}{(Y-1)(1-\zeta+Y\zeta)}\right)^{2} + \left(\frac{X_{1}}{(Z-1)(1-\zeta+Z\zeta)}\right),$$
(10)

where $0 \le \zeta \le 1$, $Y = [2]_{p,q}$ and $Z = [3]_{p,q}$.

Proof. Consider $\mathscr{L} \in \mathcal{M}_{p,q}(\zeta, \Psi)$ and $\mathscr{L}^{-1} = \mathscr{H}$. In this scenario, an analytic function exists $\mathcal{F}, \mathcal{G} : \mathfrak{U} \to \mathfrak{U}$ along $\mathcal{F}(0) = 0 = \mathcal{G}(0)$, satisfying,

$$(1-\zeta)\left(\frac{\varsigma D_{p,q}\mathscr{L}(\varsigma)}{\mathscr{L}(\varsigma)}\right) + \zeta\left(\frac{D_{p,q}\left(\varsigma D_{p,q}\mathscr{L}(\varsigma)\right)}{D_{p,q}\mathscr{L}(\varsigma)}\right) = \Psi(\mathcal{F}(\varsigma)),\tag{11}$$

and

$$(1-\zeta)\left(\frac{wD_{p,q}\mathscr{H}(w)}{\mathscr{H}(w)}\right) + \zeta\left(\frac{D_{p,q}\left(wD_{p,q}\mathscr{H}(w)\right)}{D_{p,q}\mathscr{H}(w)}\right) = \Psi(\mathcal{G}(w)).$$
(12)

Define the functions $\eta(\varsigma)$ and $\mathcal{J}(\varsigma)$ as follows;

$$\eta(\varsigma) := \frac{1 + \mathcal{F}(\varsigma)}{1 - \mathcal{F}(\varsigma)} = 1 + \eta_1 \varsigma + \eta_2 \varsigma^2 + \dots,$$

A. A. A. Rmsen et al.

and

$$\mathcal{J}(\varsigma) := \frac{1 + \mathcal{G}(\varsigma)}{1 - \mathcal{G}(\varsigma)} = 1 + \mathcal{J}_1\varsigma + \mathcal{J}_2\varsigma^2 \dots$$

Alternatively,

$$\mathcal{F}(\varsigma) := \frac{\eta(\varsigma) - 1}{\eta(\varsigma) + 1} = \frac{1}{2} \bigg[\eta_1 \varsigma + \bigg(\eta_2 - \frac{\eta_1^2}{2} \bigg) \varsigma^2 + \dots \bigg], \tag{13}$$

$$\mathcal{G}(\varsigma) := \frac{\mathcal{J}(\varsigma) - 1}{\mathcal{J}(\varsigma) + 1} = \frac{1}{2} \bigg[\mathcal{J}_1 \varsigma + \left(\mathcal{J}_2 - \frac{\mathcal{J}_1^2}{2} \right) \varsigma^2 + \dots \bigg].$$
(14)

Both $\eta(\varsigma)$ and $\mathcal{J}(\varsigma)$ are analytic within \mathfrak{U} and share the initial values $\eta(0) = 1$ and $\mathcal{J}(0) = 1$. Since \mathcal{G} and \mathcal{F} are functions that map from \mathfrak{U} to \mathfrak{U} , $\eta(\varsigma)$ and $\mathcal{J}(\varsigma)$ exhibit a real part that is greater than zero when evaluated in \mathfrak{U} , in which $|\mathcal{J}_k| \leq 2$, $|\eta_k| \leq 2$.

By substituting (13) into (11) and (14) into (12), we obtain

$$(1-\zeta)\left(\frac{\varsigma D_{p,q}\mathscr{L}(\varsigma)}{\mathscr{L}(\varsigma)}\right) + \zeta\left(\frac{D_{p,q}\left(\varsigma D_{p,q}\mathscr{L}(\varsigma)\right)}{D_{p,q}\mathscr{L}(\varsigma)}\right) = \Psi\left(\frac{1}{2}\left[\eta_{1}\varsigma + \left(\eta_{2} - \frac{\eta_{1}^{2}}{2}\right)\varsigma^{2} + \dots\right]\right), \quad (15)$$

and

$$(1-\zeta)\left(\frac{wD_{p,q}\mathscr{H}(w)}{\mathscr{H}(w)}\right) + \zeta\left(\frac{D_{p,q}\left(wD_{p,q}\mathscr{H}(w)\right)}{D_{p,q}\mathscr{H}(w)}\right) = \Psi\left(\frac{1}{2}\left[\mathcal{J}_{1}\varsigma + \left(\mathcal{J}_{2} - \frac{\mathcal{J}_{1}^{2}}{2}\right)\varsigma^{2} + \dots\right]\right).$$
(16)

In view of (1), (2) and from (15) and (16), we obtain

$$1 + \left[\left(1 - \zeta + Y\zeta \right) (Y - 1) \right] x_{2} \varsigma - \left[\left((Y - 1)((1 - \zeta + Y^{2}\zeta)) x_{2}^{2} + \left((1 - \zeta + Z\zeta)(Z - 1) \right) x_{3} \right] \varsigma^{2} + \cdots = 1 + \frac{1}{2} X_{1} \eta_{1} \varsigma + \left[\frac{1}{2} X_{1} (\eta_{2} - \frac{\eta_{1}^{2}}{2}) + \frac{1}{4} X_{2} \eta_{1}^{2} \right] \varsigma^{2} + \cdots ,$$

and

$$1 - \left[(1 - \zeta + Y\zeta)(Y - 1) \right] x_2 w + \left(\left[2(Z - 1)(1 - \zeta + Z\zeta) - (1 - \zeta + Y^2\zeta)(Y - 1) \right] x_2^2 - \left[(Z - 1)(1 - \zeta + Z\zeta] x_3 \right] w^2 = 1 + \frac{1}{2} X_1 \mathcal{J}_1 w + \left[\frac{1}{2} X_1 (\mathcal{J}_2 - \frac{\mathcal{J}_1^2}{2}) + \frac{1}{4} X_2 \mathcal{J}_1^2 \right] w^2 + \cdots,$$

these relationships are as follows:

$$(Y-1)(1-\zeta+Y\zeta)x_2 = \frac{1}{2}X_1\eta_1,$$
 (17)

$$-\left[\left(Y-1\right)\left(1-\zeta+Y^{2}\zeta\right)\right]x_{2}^{2}+\left[\left(Z-1\right)\left(1-\zeta+Z\zeta\right)\right]x_{3}=\frac{1}{2}X_{1}\left(\eta_{2}-\frac{\eta_{1}^{2}}{2}\right)+\frac{1}{4}X_{2}\eta_{1}^{2},\qquad(18)$$

$$-\left[\left(Y-1\right)\left(1-\zeta+Y\zeta\right)\right]x_2 = \frac{1}{2}X_1\mathcal{J}_1,\tag{19}$$

$$\left[2(Z-1)(1-\zeta+Z\zeta) - (Y-1)(1-\zeta+Y^{2}\zeta) \right] x_{2}^{2} \\ - \left[(Z-1)(1-\zeta+Z\zeta) \right] x_{3} = \frac{1}{2}X_{1}(\mathcal{J}_{2}-\frac{\mathcal{J}_{1}^{2}}{2}) + \frac{1}{4}X_{2}\mathcal{J}_{1}^{2}.$$

$$(20)$$

From (17) and (19), we have

$$\eta_1 = -\mathcal{J}_1,\tag{21}$$

and

$$8(Y-1)^{2}(1-\zeta+Y\zeta)^{2}x_{2}^{2} = X_{1}^{2}(\eta_{1}^{2}+\mathcal{J}_{1}^{2}).$$
⁽²²⁾

From (18) and (20) and (22),

$$x_2^2 = \frac{X_1^3(\eta_2 + \mathcal{J}_2)}{4\left(\left[(Z-1)(1-\zeta+Z\zeta) - (Y-1)(1-\zeta+Y^2\zeta)\right]X_1^2 + (Y-1)^2(1-\zeta+Y\zeta)^2(X_1-X_2)\right)}$$

By utilizing Lemma 2.1 for the coefficients η_2 and \mathcal{J}_2 , we obtain

$$|x_2| \le \frac{X_1 \sqrt{X_1}}{\sqrt{\left| ((Z-1)(1-\zeta+Z\zeta) - (Y-1)(1-\zeta+Y^2\zeta))X_1^2 + (Y-1)^2(1-\zeta+Y\zeta)^2(X_1-X_2) \right|}}$$

By subtracting (20) from (18) and using (21) and (22), we obtain

$$x_{3} = \frac{X_{1}^{2}(\eta_{1}^{2} + \mathcal{J}_{1}^{2})}{8(Y-1)^{2}(1-\zeta+Y\zeta)^{2}} + \frac{X_{1}(\eta_{2} - \mathcal{J}_{2})}{4(Z-1)(1-\zeta+Z\zeta)}.$$

Using Lemma 2.1 once more for the coefficients of $\eta_1, \eta_2, \mathcal{J}_1, \mathcal{J}_2$, we have

$$|x_3| \le \left(\frac{X_1}{(Y-1)(1-\zeta+Y\zeta)}\right)^2 + \frac{X_1}{(Z-1)(1-\zeta+Z\zeta)}.$$

For $p \to 1^-$, $q \to 1^-$ and $X_1 = 2\gamma$, $X_2 = 2\gamma^2$, Theorem 3.1 proceeds the following corollary. **Corollary 3.1.** [9] When function \mathscr{L} , as expressed in equation (1), is part of the $\mathcal{M}(\gamma, \zeta)$ class, then,

$$|x_2| \le \frac{2\gamma}{\sqrt{\left|(1+\zeta)(\gamma+1+\zeta-\zeta\gamma)\right|}},\tag{23}$$

and

$$|x_3| \le \frac{4\gamma^2}{(1+\zeta)^2} + \frac{\gamma}{1+2\zeta}.$$
(24)

4 Bi-Univalent Function Class $\mathcal{F}_{p,q}(\delta, \Psi)$

Definition 4.1. A function $\mathscr{L} \in \Sigma$ of the form (1) is said to be in the class $\mathcal{F}_{p,q}(\zeta, \Psi)$ if the following subordination holds;

$$(1-\delta)\left(\frac{\mathscr{L}(\varsigma)}{\varsigma}\right) + \delta\left(D_{p,q}\mathscr{L}(\varsigma)\right) \prec \Psi(\varsigma), \quad (0 \le \delta \le 1, \quad 0 (25)$$

and

$$\left(1-\delta\right)\left(\frac{\mathscr{H}(w)}{w}\right) + \delta\left(D_{p,q}\mathscr{H}(w)\right) \prec \Psi(w), \quad (0 \le \delta \le 1, \quad 0$$

where $\varsigma, w \in \mathfrak{U}$, and \mathscr{H} is given by (2).

Theorem 4.1. Let \mathscr{L} given by (1) be in the class $\mathcal{F}_{p,q}(\delta, \Psi)$. Then,

$$|x_{2}| \leq \frac{X_{1}\sqrt{X_{1}}}{\sqrt{\left|\left(1-\delta+Z\delta\right)X_{1}^{2}+\left(1-\delta+Y\delta\right)^{2}\left(X_{1}-X_{2}\right)\right|}},$$
(27)

and

$$x_3| \le X_1 \left(\frac{1}{\left(1-\delta+Z\delta\right)}\right) + \left(\frac{X_1}{\left(1-\delta+Y\delta\right)}\right)^2, \quad \text{where } Z = [3]_{p,q} \text{ and } Y = [2]_{p,q}.$$
(28)

Proof. By following the same steps as in the proof of Theorem 3.1, we obtain the following relationship;

$$\left(1 - \delta + Y\delta\right)x_2 = \frac{1}{2}X_1\eta_1,\tag{29}$$

$$\left(1 - \delta + Z\delta\right)x_3 = \frac{1}{2}X_1\left(\eta_2 - \frac{\eta_1^2}{2}\right) + \frac{1}{4}X_2\eta_1^2,\tag{30}$$

$$-(1-\delta+Y\delta)x_2 = \frac{1}{2}X_1\mathcal{J}_1,$$
(31)

$$2(1-\delta+Z\delta)x_2^2 - (1-\delta+Z\delta)x_3 = \frac{1}{2}X_1(\mathcal{J}_2 - \frac{\mathcal{J}_1^2}{2}) + \frac{1}{4}X_2\mathcal{J}_1^2.$$
 (32)

From (29) and (31), we get

$$\eta_1 = -\mathcal{J}_1,\tag{33}$$

$$8(1 - \delta + Y\delta)^2 x_2^2 = X_1^2 (\eta_1^2 + \mathcal{J}_1^2).$$
(34)

Additionally, by examining (30), (32) and (34), we discover that,

$$x_2^2 = \frac{X_1^3(\eta_2 + \mathcal{J}_2)}{4\left[\left(1 - \delta + Z\delta\right)X_1^2 + \left(1 - \delta + Y\delta\right)^2(X_1 - X_2)\right]}.$$

By employing Lemma 2.1 for the coefficients η_2 and \mathcal{J}_2 , we promptly obtain,

$$|x_2| \le \frac{X_1 \sqrt{X_1}}{\sqrt{\left| (1 - \delta + Z\delta) X_1^2 + (1 - \delta + Y\delta)^2 (X_1 - X_2) \right|}}.$$

This establish the bound on $|x_2|$ as presented in (27). To express bound on $|x_3|$, by subtracting (32) from (30) and using (34) we get,

$$x_{3} = \frac{X_{1}^{2}(\eta_{1}^{2} + \mathcal{J}_{1}^{2})}{8(1 - \delta + Y\delta)^{2}} + \frac{X_{1}(\eta_{2} - \mathcal{J}_{2})}{4(1 - \delta + Z\delta)}.$$

 \square

After applying Lemma 2.1 for the coefficients η_1 , η_2 , \mathcal{J}_1 and \mathcal{J}_2 , we get,

$$|x_3| \le X_1 \left(\frac{1}{\left(1 - \delta + Z\delta\right)}\right) + \left(\frac{X_1}{\left(1 - \delta + Y\delta\right)}\right)^2.$$
(35)

This completes the proof of Theorem 4.1.

5 Conclusions

In this article, we have presented a novel, subclasses of Σ defined (p,q)-differential operator. We even found the upper bounds for the coefficients $|x_2|$ and $|x_3|$ for the functions that belong to this original subclass and its subclasses.

Acknowledgement The authors are thankful to the referees for their valuable comments and suggestions.

Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- D. A. Brannan, J. Clunie & W. E. Kirwan (1970). Coefficient estimates for a class of starlike functions. *Canadian Journal of Mathematics*, 22(3), 476–485. https://doi.org/10.4153/ CJM-1970-055-8.
- [2] R. Chakrabarti & R. Jagannathan (1991). A (p,q)-oscillator realization of two-parameter quantum algebras. *Journal of Physics A: Mathematical and General*, 24(13), Article ID: L711. https://dx.doi.org/10.1088/0305-4470/24/13/002.
- [3] E. Deniz (2013). Certain subclasses of bi-univalent functions satisfying subordinate conditions. *Journal of Classical Analysis*, 2(1), 49–60. http://dx.doi.org/10.7153/jca-02-05.
- [4] P. Duren (1994). Linear and Complex Analysis Problem Book 3: Part II, volume 1574, chapter Geometric Function Theory, pp. 383–422. Springer, Berlin, Heidelberg. https://doi.org/10. 1007/BFb0101068.
- [5] V. Gupta (2016). (p,q)-Baskakov-Kantorovich operators. Applied Mathematics & Information Sciences, 10(4), 1551–1556. http://dx.doi.org/10.18576/amis/100433.
- [6] S. H. Hadi, M. Darus & T. Bulboaca (2023). Bi-univalent functions of order ζ connected with (m, n)-Lucas polynomial. *Journal of Mathematics and Computer Science*, 31(4), 433–447. http://dx.doi.org/10.22436/jmcs.031.04.06.
- [7] V. Kac & P. Cheung (2002). *Quantum Calculus* volume 113. Springer, New York. https: //doi.org/10.1007/978-1-4613-0071-7.
- [8] M. Lewin (1967). On a coefficient problem for bi-univalent functions. *Proceedings of the American Mathematical Society*, 18(1), 63–68. https://doi.org/10.2307/2035225.

- [9] X. F. Li & A. P. Wang (2012). Two new subclasses of bi-univalent functions. *International Mathematical Forum*, 7(30), 1495–1504.
- [10] W. Ma & D. Minda (1992). A unified treatment of some special classes of univalent functions. In *Proceedings of the Conference on Complex Analysis*, 1992, pp. 157–169. Nankai Institute of Mathematics. International Press. https://www.researchgate.net/publication/245129813_ A_unified_treatment_of_some_special_classes_of_functions.
- [11] G. V. Milovanović, V. Gupta & N. Malik (2018). (p,q)-Beta functions and applications in approximation. *Boletín de la Sociedad Matemática Mexicana*, 24(1), 219–237. https://doi.org/ 10.1007/s40590-016-0139-1.
- [12] C. Pommerenke (1975). *Univalent Functions*. Studia Mathematica: Mathematische Lehrbücher. Vandenhoeck and Ruprecht, Paderborn.
- [13] H. M. Srivastava, A. K. Mishra & P. Gochhayat (2010). Certain subclasses of analytic and bi-univalent functions. *Applied Mathematics Letters*, 23(10), 1188–1192. https://doi.org/10. 1016/j.aml.2010.05.009.
- [14] H. M. Srivastava, A. K. Wanas & R. Srivastava (2021). Applications of the *q*-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. *Symmetry*, 13(7), Article ID: 1230. https://doi.org/10.3390/sym13071230.
- [15] A. K. Wanas & A. M. Mahdi (2023). Applications of the *q*-Wanas operator for a certain family of bi-univalent functions defined by subordination. *Asian-European Journal of Mathematics*, 16(6), Article ID: 2350095. http://dx.doi.org/10.1142/S179355712350095X.